\(\int \frac {1}{(a+b \tanh ^2(x))^{3/2}} \, dx\) [243]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 12, antiderivative size = 56 \[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{(a+b)^{3/2}}+\frac {b \tanh (x)}{a (a+b) \sqrt {a+b \tanh ^2(x)}} \]

[Out]

arctanh((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/(a+b)^(3/2)+b*tanh(x)/a/(a+b)/(a+b*tanh(x)^2)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3742, 390, 385, 212} \[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{(a+b)^{3/2}}+\frac {b \tanh (x)}{a (a+b) \sqrt {a+b \tanh ^2(x)}} \]

[In]

Int[(a + b*Tanh[x]^2)^(-3/2),x]

[Out]

ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]]/(a + b)^(3/2) + (b*Tanh[x])/(a*(a + b)*Sqrt[a + b*Tanh[x]
^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 3742

Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x]
, x]}, Dist[c*(ff/f), Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ
[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tanh (x)\right ) \\ & = \frac {b \tanh (x)}{a (a+b) \sqrt {a+b \tanh ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right )}{a+b} \\ & = \frac {b \tanh (x)}{a (a+b) \sqrt {a+b \tanh ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{1-(a+b) x^2} \, dx,x,\frac {\tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{a+b} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{(a+b)^{3/2}}+\frac {b \tanh (x)}{a (a+b) \sqrt {a+b \tanh ^2(x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 4.78 (sec) , antiderivative size = 223, normalized size of antiderivative = 3.98 \[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=-\frac {\sinh ^2(x) \left (\frac {15}{4} a (3 a-2 b+(3 a+2 b) \cosh (2 x)) \text {csch}(x) \text {sech}(x) \left ((a-b) \arcsin \left (\sqrt {-\frac {(a+b) \sinh ^2(x)}{a}}\right )+(a+b) \arcsin \left (\sqrt {-\frac {(a+b) \sinh ^2(x)}{a}}\right ) \cosh (2 x)-2 a \sqrt {-\frac {(a+b) \left (b+a \coth ^2(x)\right ) \sinh ^4(x)}{a^2}}\right )+\sqrt {2} a^2 (a+b) \operatorname {Hypergeometric2F1}\left (2,2,\frac {7}{2},-\frac {(a+b) \sinh ^2(x)}{a}\right ) \left (-\frac {(a+b) (a-b+(a+b) \cosh (2 x)) \sinh ^2(x)}{a^2}\right )^{3/2} \tanh (x)\right )}{15 a^4 \left (-\frac {(a+b) \sinh ^2(x)}{a}\right )^{3/2} \sqrt {\cosh ^2(x)+\frac {b \sinh ^2(x)}{a}} \sqrt {a+b \tanh ^2(x)}} \]

[In]

Integrate[(a + b*Tanh[x]^2)^(-3/2),x]

[Out]

-1/15*(Sinh[x]^2*((15*a*(3*a - 2*b + (3*a + 2*b)*Cosh[2*x])*Csch[x]*Sech[x]*((a - b)*ArcSin[Sqrt[-(((a + b)*Si
nh[x]^2)/a)]] + (a + b)*ArcSin[Sqrt[-(((a + b)*Sinh[x]^2)/a)]]*Cosh[2*x] - 2*a*Sqrt[-(((a + b)*(b + a*Coth[x]^
2)*Sinh[x]^4)/a^2)]))/4 + Sqrt[2]*a^2*(a + b)*Hypergeometric2F1[2, 2, 7/2, -(((a + b)*Sinh[x]^2)/a)]*(-(((a +
b)*(a - b + (a + b)*Cosh[2*x])*Sinh[x]^2)/a^2))^(3/2)*Tanh[x]))/(a^4*(-(((a + b)*Sinh[x]^2)/a))^(3/2)*Sqrt[Cos
h[x]^2 + (b*Sinh[x]^2)/a]*Sqrt[a + b*Tanh[x]^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(271\) vs. \(2(48)=96\).

Time = 0.09 (sec) , antiderivative size = 272, normalized size of antiderivative = 4.86

method result size
derivativedivides \(-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}+\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(272\)
default \(-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}+\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(272\)

[In]

int(1/(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/(a+b)/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b/(a+b)*(2*b*(tanh(x)-1)+2*b)/(4*(a+b)*b-4*b^2)/(b*(tan
h(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^
2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1))+1/2/(a+b)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)+b/(a+b)*(2*b*
(1+tanh(x))-2*b)/(4*(a+b)*b-4*b^2)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)-1/2/(a+b)^(3/2)*ln((2*a+2*b-2*b
*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 975 vs. \(2 (48) = 96\).

Time = 0.36 (sec) , antiderivative size = 2509, normalized size of antiderivative = 44.80 \[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + 2*(a^2 - a*b)*cosh(x)
^2 + 2*(3*(a^2 + a*b)*cosh(x)^2 + a^2 - a*b)*sinh(x)^2 + a^2 + a*b + 4*((a^2 + a*b)*cosh(x)^3 + (a^2 - a*b)*co
sh(x))*sinh(x))*sqrt(a + b)*log(-((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b^2 + b^3)*cosh(x)*sinh(x)^7 + (a*b^2 + b^3)*
sinh(x)^8 - 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*
b^2 + b^3)*cosh(x)^3 - 3*(a*b^2 + 2*b^3)*cosh(x))*sinh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^4 + (70*
(a*b^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^2 + 2*b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a*b
^2 + b^3)*cosh(x)^5 - 10*(a*b^2 + 2*b^3)*cosh(x)^3 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x))*sinh(x)^3 + a^3
+ 3*a^2*b + 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2*(14*(a*b^2 + b^3)*cosh(x)^6 - 15*(a*b^2 +
2*b^3)*cosh(x)^4 + a^3 - 3*a*b^2 - 2*b^3 + 3*(a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b
^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4
 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^
2*cosh(x)^2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*b^2*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2
 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7 - 3*(a*b^2 + 2*b^3)*cosh(x)^5 + (a^3 - a^2*
b + 4*a*b^2 + 6*b^3)*cosh(x)^3 + (a^3 - 3*a*b^2 - 2*b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) +
15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) +
 ((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + 2*(a^2 - a*b)*cosh(x)^2 +
2*(3*(a^2 + a*b)*cosh(x)^2 + a^2 - a*b)*sinh(x)^2 + a^2 + a*b + 4*((a^2 + a*b)*cosh(x)^3 + (a^2 - a*b)*cosh(x)
)*sinh(x))*sqrt(a + b)*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*a*cosh(x)^
2 + 2*(3*(a + b)*cosh(x)^2 + a)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b
)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a +
b)*cosh(x)^3 + a*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*sqrt(2)*((a*b + b^
2)*cosh(x)^2 + 2*(a*b + b^2)*cosh(x)*sinh(x) + (a*b + b^2)*sinh(x)^2 - a*b - b^2)*sqrt(((a + b)*cosh(x)^2 + (a
 + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*co
sh(x)^4 + 4*(a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*cosh(x)*sinh(x)^3 + (a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*sinh(x
)^4 + a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3 + 2*(a^4 + a^3*b - a^2*b^2 - a*b^3)*cosh(x)^2 + 2*(a^4 + a^3*b - a^2*b
^2 - a*b^3 + 3*(a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*cosh(x)^2)*sinh(x)^2 + 4*((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^
3)*cosh(x)^3 + (a^4 + a^3*b - a^2*b^2 - a*b^3)*cosh(x))*sinh(x)), -1/2*(((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)
*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + 2*(a^2 - a*b)*cosh(x)^2 + 2*(3*(a^2 + a*b)*cosh(x)^2 + a^2 - a*b)
*sinh(x)^2 + a^2 + a*b + 4*((a^2 + a*b)*cosh(x)^3 + (a^2 - a*b)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*
(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 - a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(
x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh
(x)^3 + (a*b + b^2)*sinh(x)^4 + (a^2 - a*b - 2*b^2)*cosh(x)^2 + (6*(a*b + b^2)*cosh(x)^2 + a^2 - a*b - 2*b^2)*
sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a*b + b^2)*cosh(x)^3 + (a^2 - a*b - 2*b^2)*cosh(x))*sinh(x))) + ((a^2 +
a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + 2*(a^2 - a*b)*cosh(x)^2 + 2*(3*(a^2
 + a*b)*cosh(x)^2 + a^2 - a*b)*sinh(x)^2 + a^2 + a*b + 4*((a^2 + a*b)*cosh(x)^3 + (a^2 - a*b)*cosh(x))*sinh(x)
)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(
x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*
cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((
a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) - 2*sqrt(2)*((a*b + b^2)*cosh(x)^2 + 2*(a*b + b^2)*cosh(
x)*sinh(x) + (a*b + b^2)*sinh(x)^2 - a*b - b^2)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*cosh(x)^4 + 4*(a^4 + 3*a^3*b + 3*a^2
*b^2 + a*b^3)*cosh(x)*sinh(x)^3 + (a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*sinh(x)^4 + a^4 + 3*a^3*b + 3*a^2*b^2 +
a*b^3 + 2*(a^4 + a^3*b - a^2*b^2 - a*b^3)*cosh(x)^2 + 2*(a^4 + a^3*b - a^2*b^2 - a*b^3 + 3*(a^4 + 3*a^3*b + 3*
a^2*b^2 + a*b^3)*cosh(x)^2)*sinh(x)^2 + 4*((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*cosh(x)^3 + (a^4 + a^3*b - a^2*
b^2 - a*b^3)*cosh(x))*sinh(x))]

Sympy [F]

\[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int \frac {1}{\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(a+b*tanh(x)**2)**(3/2),x)

[Out]

Integral((a + b*tanh(x)**2)**(-3/2), x)

Maxima [F]

\[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tanh(x)^2 + a)^(-3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 288 vs. \(2 (48) = 96\).

Time = 0.44 (sec) , antiderivative size = 288, normalized size of antiderivative = 5.14 \[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\frac {{\left (a b^{2} + b^{3}\right )} e^{\left (2 \, x\right )}}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}} - \frac {a b^{2} + b^{3}}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}}{\sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}} - \frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} \]

[In]

integrate(1/(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")

[Out]

((a*b^2 + b^3)*e^(2*x)/(a^3*b + 2*a^2*b^2 + a*b^3) - (a*b^2 + b^3)/(a^3*b + 2*a^2*b^2 + a*b^3))/sqrt(a*e^(4*x)
 + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - 1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(
4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/(a + b)^(3/2) - 1/2*log(abs(-sqrt(a
 + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/(a + b)^(3/2)
+ 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a
+ b)))/(a + b)^(3/2)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int \frac {1}{{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}} \,d x \]

[In]

int(1/(a + b*tanh(x)^2)^(3/2),x)

[Out]

int(1/(a + b*tanh(x)^2)^(3/2), x)